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1 Problem

In theoretical physics, consideration of phenomena in one or two spatial dimensions (1 + 1
or 2 + 1 spacetime dimensions) is often regarded as a useful step toward understanding in
three spatial dimensions (3 + 1 spacetime).1 Why isn’t classical electrodynamics more often
considered in one or two spatial dimensions?2,3,4,5,6

2 Solution

2.1 Electrodynamics in 1 Spatial Dimension

If we consider the case of a single spatial dimension as similar to that of three dimensions but
with all charges and field lines somehow confined inside a narrow tube, we are led to suppose
that the electric field strength is constant (in both space and time) away from charges, since
a tube of field lines has constant field strength. Then, there are no waves of electric field
away from charges, even if the charges are moving/accelerating.7

1A classic example is the Ising model of ferromagnetism [1].
2Examples of Schrödinger’s equation in one and two spatial dimensions include the case of a “ Coulomb”

potential V = −q/r, but this potential does not correspond to the electric potential of a (point) charge q
except in three spatial dimensions [2]. As can be confirmed from sec. 2, the electric scalar potential in one
spatial dimension is V1 = −q |x| [3], while in two spatial dimensions it is V2 = −q ln r [4].

3Aspects of this problem were considered by Ehrenfest [5, 6] as a partial “explanation” as to why we live
in 3 + 1 spacetime. See [7] for general comments on such efforts.

4While the literature on electrodynamics in integer spatial dimensions other than 3 is sparse, there is a
very extensive literature on electrodynamics in fractal dimensions. See, for example, [8, 9, 10, 11].

5For general relativity in one and two spatial dimensions, see [12].
6The most famous literary excursion into two spatial dimensions is Flatland [13] (1884). Also noteworthy

is The Planiverse by Dewdney [14, 15], which inspired considerations of electrodynamics in two spatial
dimensions in [16, 17].

7Different versions of electrodynamics was discussed by Wheeler, sec. 8 of [18], and [19], using the
language of differential forms to construct electrodynamics in an odd number of spatial dimensions, but not in
an even number, in a manner that the case of 3 spatial dimensions is the familiar Maxwellian electrodynamics.
[Feb. 21 (2022)] See also sec. IV.A.2 of [20].

This version of electrodynamics in 1 spatial dimension has both a scalar E and B, field, but no electric
charge (and so is not a gauge theory). Rather, the fields are coupled to a scalar current J , and obey,

∂B

∂x
=

1
c

∂E

∂t
+ J,

∂E

∂x
=

1
c

∂B

∂t
, (1)

This electrodynamics does support waves, according to,
∂2E

∂x2
− 1

c2

∂E

∂t2
= −1

c

∂J

∂t
,

∂2B

∂x2
− 1

c2

∂B

∂t2
= −∂J

∂x
. (2)
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Furthermore, the magnetic field (in 3 spatial dimensions) of moving charges does not
affect other charges moving along the same axis. In effect, there is no magnetic field in 1 + 1
electrodynamics as considered here (i.e., in 1 spatial dimension, with only electric charges).
As there are no waves and no magnetic field in 1 spatial dimension, the speed of light, c,
plays no role in “electrodynamics” here.8

It is natural to choose (Gaussian) units in which the (Coulomb) force between two charges
q and q′, which is independent of their separation, is simply F = qq′, with the implication
that the magnitude of the electric field strength E of charge q is just E = q for observers at
x > xq. Then, the electric field strength at a point x0 is E = q+ − q−, where q+ is the total
charge at x > x0 and q− is the total charge at x < x0, independent of the motion of these
charges (unless they cross the point x0 so as to change q+ and q−).

There is not much more content to classical electrodynamics in 1 + 1 dimensions, which
seems too trivial to provide useful “toy models” to help in understanding electrodynamics
in 3 + 1 dimensions.9,10,11

2.1.1 Additional Remarks

This section added Aug. 2019, inspired by e-comments from Xabier Prado and Jorge Mira. A
slightly different perspective on electrodynamics in 1 spatial dimension is given in Appendix
A.1

A differential equation for the 1-dimensional electric field can be written as,

∂E

∂x
= 2ρ, (3)

where ρ is the (linear) charge density. This can be considered the 1-d version of the 3-d
Maxwell equation ∇ · E = 4πρ (in Gaussian units). According to eq. (3), the electric field
of charge q at position xq is E = q for x > xq and E = −q for x < xq. The total electric
field at position x is,

E(x) = Q− − Q+, (4)

where Q+ =
∫∞

x
ρ(x′) dx′ is the total charge at and x′ > x and Q− =

∫ x

−∞ ρ(x′) dx′ is the
total charge at and x′ < x.

8Electromagnetic plane waves in three spatial dimensions are often considered to be “one dimensional”,
but such waves don’t exist in “one dimensional” (1 + 1 spacetime) electrodynamics. For an example of how
one-dimensional thinking can lead to misunderstandings as to three-dimensional electrodynamics, see [24].

9An electric dipole, with charge q at x+ and charge −q at x− has zero electric field outside the interval
[x+, x−], so there is no interaction between and one electric dipole and another, or between an electric dipole
and an external electric charge. Thus, 1-dimensional models of spin-spin interactions are outside the type of
1-dimensional electrodynamics considered here.

10Schwinger’s study [25] of quantum electrodynamics in 1 + 1 dimensions anticipated, to some extent,
the Higgs mechanism in the emerging electroweak theory.

11The theory of quantum chromodynamics includes the phenomenon of “confinement” of the color fields,
which can be approximated as lying within 1-dimensional flux tubes/strings. Hence, toy models of 1 + 1
dimensional quantum chromodynamics can provide some insight into the 3 + 1 dimensional case [26, 27, 28].
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There is no need for an additional differential equation to determine the scalar field E,
but we note that the 3-d Maxwell equation ∇×B = (1/c)∂E/∂t+4πJ/c has a 1-d equivalent,

0 =
∂E

∂t
+ 2J, (5)

where J is the 1-d current density. We could call ∂E/∂t the 1-d “displacement current”, in
which case eq. (5) could be interpreted as the total 1-d current being zero (although such
language does not add much to our understanding).

Equations (3) and (5) are not independent, as seen by taking derivatives,

∂2E

∂t∂x
= 2

∂ρ

∂t
=

∂2E

∂x∂t
= −2

∂J

∂x
,

∂J

∂x
+

∂ρ

∂t
= 0, (6)

which latter is the 1-d continuity equation (that expresses conservation of charge).
In a region where the charge and current densities are zero, the electric field is constant

in both x and t, so there are no (nontrivial) electric waves. The electric field at a point can
only change if the charge or current density at the point changes.

There is no stability for an electric charge in a region where the only external force is
due to the electric field of other charges. Thus, the 1-d version of Earnshaw’s theorem [21]
is stronger than that in 3-d.

Since electrodynamics in one spatial dimension is so trivial, there is little advantage
to consideration of potentials. But, we can contemplate both a scalar potential V and a
“vector” potential A such that,12

E = −∂V

∂x
− ∂A

∂t
. (7)

Since there is only a single, scalar field E, V and A cannot be independent, so they are
subject to a (gauge) condition. Examples are:

1. A = 0. This condition can only apply to 1-d electrodynamics, where B (= ∇×A) = 0.

In this gauge, V (x) =
∫

ρ(x′) |x′ − x| dx′.

2. V = 0, which condition defines the so-called Gibbs (or Hamiltonian) gauge [23].

In this gauge, A(x, t) = − ∫ t

t0
E(x, t′) dt′.

3. ∂A/∂x = −(1/v2) ∂V/∂t, which condition defines a velocity gauge [23] for arbitrary
(constant) velocity v. The Coulomb gauge corresponds to v = ∞, while v = c defines
the Lorenz gauge.

Combining eqs. (5), (7) and the velocity-gauge condition, we find a wave equation for
A:

− 2J =
∂E

∂t
= − ∂2V

∂t∂x
− ∂2A

∂t2
= v2∂2A

∂x2
− ∂2A

∂t2
,

∂2A

∂x2
− 1

v2

∂2A

∂t2
= −2J

v2
. (8)

12See, for example, sec. V of [22].
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It is impressive that there can be waves of the “vector potential” A, since there are no
waves of the field E. However, there is not much physical content to eq. (8), as can be
seen by the following.

In a region where J is zero, a wavefunction for A has the form A = f(x − vt). The
gauge condition tells that f ′ = −(1/v2) ∂V/∂t, such that V = vf(x − vt), and then
eq. (7) leads to E = −vf ′ + vf ′ = 0, as expected since there are no waves of E in 1-d
electrodynamics.

2.2 Electrodynamics in 2 Spatial Dimensions

In two spatial dimensions, Coulomb’s law for the force on electric charge q′ due to charge q,
both at rest, is Fq′ = qq′ r̂/r ≡ q′ E, where r is the vector from charge q to q′ and we use
Gaussian units, so the electric field E of a point charge q (at rest) has the nontrivial form,13

E =
q

r
r̂. (9)

Moving charges lead to time-varying electric fields at a fixed observer, so wave phenomena
are possible.

Gauss’ law for the electric field E = (Ex, Ey) in 2 spatial dimensions is that the number
of field lines crossing a closed loop is proportional to the total charge inside the loop,∮

E · dl = 2πQin = 2π

∫
ρ dArea, (10)

where ρ is the (surface) charge density, and the proportionality constant is 2π in Gaussian
units. The differential form of Gauss’ law in 2 spatial dimensions is,

∇ · E = 2πρ, where ∇ =

(
∂

∂x
,

∂

∂y

)
. (11)

When both charges q and q′ are in motion with uniform velocities v = (vx, vy) and
v′ = (v′

x, v
′
y) that are small compared to c, charge q′ experiences the (Lorentz) force,14

Fq′ = q′
(
E + (v′

y,−v′
x)

q(vxry − vyrx)

c2r2

)
, (13)

13Electrodynamics in two spatial dimensions (x, y) is equivalent to that in three spatial dimensions (x, y, z)
for examples in which the 3-d charge and current distributions are independent of z. Since the 3-d electric
field of a line charge of density λ per unit length is E3 = 2λ r̂/r, where r lies in the x-y plane, we see that a
2-d electric charge q is equivalent to a 3-d linear charge density λ = q/2.

The 3-d electrostatic force between line charges λ and λ′ is 2λ′λ r̂/r, which corresponds to q′E3/2. Thus,
the 2-d force must be twice the corresponding 3-d force, if we wish to have the relation F = q′E2 hold in 2-d.

14The 2-d magnetic force corresponds to the 3-d force per unit length in 3-d examples where the charge
and current densities are independent of z. Since the 3-d magnetic field of a slowly moving line charge of
density λ = q/2 with velocity v is v/c×E3 = v/c× q r/r2, the 3-d magnetic force per unit length on a line
charge of density λ′ = q′/2 with velocity v′ is, where vectors r, v and v′ have no z component,

q′q
2c2r2

v′ × (v × r) =
q′q

2c2r2
[(v′ · r)v − (v · v′) r] =

q′q
2c2r2

[(v′xrx + v′yry)(vx, vy, 0)− (vxv′x + vyv′y)(rx, ry, 0)]

=
q′q

2c2r2
(vxry − vyrx)(v′y,−v′x, 0), (12)

from which eq. (13) follows, noting that the 2-d force is twice the corresponding 3-d force.
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where again vector r points from q to q′. This might lead enthusiasts of vector analysis to
invent the concept of “perpendicular vectors”, defined for any 2-vector a = (ax, ay) as,15

a⊥ ≡ (ay,−ax), (a⊥)⊥ = −a, (14)

so that,16

a⊥ · a⊥ = a · a = a2 = a2
x + a2

y, a · a⊥ = 0, a · b⊥ = −a⊥ · b = axby − aybx. (15)

Then, the Lorentz force law can be recast as,17

Fq′ = q′
(
E +

v′
⊥
c

B

)
, (16)

where the scalar B is the “magnetic” field in 2 spatial dimensions due to charge q moving
with velocity v small compared to c,

B = q
v · r⊥
cr2

(
= −q

v⊥ · r
cr2

)
. (17)

For a continuous, steady (surface) current density J of moving charges, the magnetic field
has the (Biot-Savart) form,

B =

∫
J · r⊥
cr2

dArea, (18)

where “steady” means,

∇ · J = −∂ρ

∂t
= 0. (19)

The Ampère of 2 + 1 spacetime might then introduce the 2-dimensional vector derivative
operator,

∇⊥ =

(
∂

∂y
,− ∂

∂x

)
, ∇2 = ∇ ·∇ = ∇⊥ · ∇⊥ =

∂2

∂x2
+

∂2

∂y2
, ∇ · ∇⊥ = 0, (20)

to show that the scalar magnetic field (18) due to steady currents obeys the differential
equation,18

∇⊥B =
2π

c
J. (21)

15The vector −a⊥ is also perpendicular to a, so the notion of a perpendicular vector has a two-fold
ambiguity in 2 spatial dimensions. In n ≥ 3 spatial dimensions there is an infinite set of perpendicular
vectors (of same norm as an n-vector a), such that perpendicular-vector algebra is not useful there.

16a ·b⊥ = −a⊥ ·b is the 2-vector equivalent of the third component of a×b when a and b are 3-vectors.
Thus, perpendicular-vector algebra plays a special role in 2 spatial dimensions, akin to the special role of
vector cross products in 3 spatial dimensions.

17It does not make sense to suppose that there could exist magnetic charges p in 2 + 1 spacetime, as no
2-vector force Fp can be constructed from p and B. As discussed in Appendix A, it seems that magnetic
charges are physically plausible only in 3 + 1 spacetime.

18Ampère had no concept of the magnetic field, and did not invent the differential form, ∇×B = 4πJ/c,
of “Ampère’s law” in 3-d, which rather was first stated by Maxwell on p. 56 of [29].

5



The Faraday of 2 + 1 spacetime would show that a time-varying magnetic field affects
the electric field according to the forms,19

∮
E · dl = −1

c

d

dt

∫
B dArea, ∇ · E⊥ = −∇⊥ · E = −1

c

∂B

∂t
, (22)

and finally the Maxwell of 2 + 1 spacetime would generalize Ampère’s law (21) to time-
varying situations by inventing the 2 + 1 “displacement current”, (1/2π)∂E/∂t, such that
the microscopic Maxwell equations (for E rather than E⊥) are,

∇ · E = 2πρ, ∇⊥ · E =
1

c

∂B

∂t
, ∇⊥B =

1

c

∂E

∂t
+

2π

c
J. (23)

There are three scalar, differential equations for the three field components E1, E2 and B;
there is no equivalent to the 3-dimensional equation ∇ · B = 0.20

Applying the operator ∇⊥ to the third of eq. (23), and then using the second of these,
leads to the wave equation for the magnetic field,

∇2B − 1

c2

∂2B

∂t2
=

2π

c
∇⊥ · J. (24)

Noting a vector calculus identity, ∇⊥(∇⊥ · E) = ∇2E − ∇(∇ · E), applying the operator
∇⊥ to the second of eq. (23), and then using the first and third of these, leads to the wave
equation for the electric field,

∇2E− 1

c2

∂2E

∂t2
= 2π∇ρ +

2π

c2

∂J

∂t
. (25)

Thus, waves of both E and B propagate at the speed c, which can be called the speed of
“light” in 2 + 1 electrodynamics.

2.2.1 Potentials

To write the fields E and B in terms of potentials, we don’t use a single scalar potential for
B, but relate it to a two-component vector potential A, according to,

B = −∇ · A⊥ = −∇⊥ · A, (26)

so that the second Maxwell equation of (23) can be written as,

∇⊥ ·
(
E +

1

c

∂A

∂t

)
= 0. (27)

19The integral form of Faraday’s law in 3-d was first given by Maxwell on p. 50 of [29], and the differential
form was first stated by him on p. 290 of [30].

20In 3 + 1 spacetime the equation ∇ · B = 0 indicates that the 3-vector magnetic field B is not due
to magnetic charges. In 2 + 1 spacetime the scalar character of the magnetic field B alerts us that this is
not due to magnetic charges, which would led to a 2-vector magnetic field Bm. The Appendix considers
electrodynamics with magnetic charges in 2 + 1 spacetime.
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From the definitions (20) we see that ∇ ·∇⊥ = 0, so that any vector field f of the form −∇V
for a scalar potential V obeys ∇⊥ · f = 0. Hence we can relate the field f = E + ∂A/∂ct to
a scalar potential V , and write,

E = −∇V − 1

c

∂A

∂t
. (28)

Wave equations for the potentials can be found by replacing the fields in the Maxwell
equations (23) by their expressions (26) and (28) in terms of the potentials. The first of
eq. (23) leads to,

∇2V +
1

c

∂∇ · A
∂t

= −2πρ, (29)

and the third of eq. (23) implies that,

∇2A− ∇(∇ · A) − 1

c
∇∂V

∂t
− 1

c2

∂2A

∂t2
= −2π

c
J. (30)

If we invoke the Lorenz-gauge condition,

∇ · A +
1

c

∂V

∂t
= 0 (Lorenz), (31)

then the wave equations of the potentials take the forms,

∇2V − 1

c2

∂2V

∂t2
= −2πρ, ∇2A− 1

c2

∂2A

∂t2
= −2π

c
J (Lorenz gauge). (32)

Since cylindrical waves vary with r2 = |x2 − x′
2| as 1/

√
r2, where x2 = (x, y) is the 2-

dimensional position vector, one might expect that the retarded-potential solutions to the
2-d wave equations (32) have the form,21

V2(x2, t) =

∫
ρ2(x

′
2, t

′ = t − r2/c)√
r2

d2x′
2, A2(x2, t) =

∫
J2(x

′
2, t

′ = t− r2/c)

c
√

r2
d2x′

2. (33)

Now, for a 3-dimensional example in which the charge and current distributions were
independent of z (i.e., two dimensional), the retarded scalar potential in the plane z = 0
could be written as,

V3(x3, t) = V3(x2, t) =

∫
ρ3(x

′
3, t

′ = t − r3/c)

r3

d3x′
3 = 2

∫ ∞

0

dz′
∫

ρ3(x
′
2, t

′ = t − r3/c)√
r2
2 + z′2 d2x′

2

= 2

∫ t−r2/c

−∞
dt′
∫

ρ3(x
′
2, t

′)√
(t − t′)2 − r2

2/c2

d2x′
2, (34)

where x3 = (x, y, 0), x2 = (x, y), r2
2 = (x − x′)2 + (y − y′)2, r2

3 = r2
2 + z′2, and the relation

t′ = t− r3/c leads to |z′| = c
√

(t − t′)2 − r2
2/c

2 and dz′ = c r3 dt′/ |z′|.
21An earlier version of eq. (33) was also faulty, as pointed out in [35], which brought refs. [31, 32, 34] to

the author’s attention.
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Hadamard [31, 32] was among the first to realize that the retarded (scalar) potential
V2 in 2-dimensional electrodynamics is not given by eq. (33), but actually obeys the form
(34)22 (with the 2-d charge density ρ2 = 2ρ3, as in footnote 10), which contains contributions
to the integrand from times earlier than t′ = t − r2/c, as if the 2-dimensional space (x, y)
had an effective third dimension z. This peculiar behavior (called “descent” from 3 to 2
dimensions by Hadamard)23 led Ehrenfest (1917) [5, 6] to argue that this is why we live in
a 3-dimensional space.24

Examples of electrodynamics in 2 + 1 dimensions may be best approached by first consid-
ering their equivalents in 3 + 1 dimensions. Hence, there is almost no literature on classical
electrodynamics in 2 + 1 dimensions as being simpler than in 3 + 1 dimensions.

2.2.2 Energy, Momentum and Stress

Poynting’s argument [37] (originally in 3 + 1 spacetime, but here considered for 2 + 1
spacetime) relates the rate of work done by electromagnetic fields on “free” electric and
magnetic currents to both flow of energy and to rate of change of stored energy. The density
of the time rate of change of work on electric currents follows from eq. (16),

dw

dt
(= F · v) = J · E = E ·

(
∇⊥B − 1

2π

∂E

∂t

)
=

c

2π
E · ∇⊥B − 1

4π

∂E2

∂t
. (35)

Now,

E · ∇⊥B = Ex
∂B

∂y
− Ey

∂B

∂x
= −∂(−ExB)

∂y
−B

∂Ex

∂y
− ∂(EyB)

∂x
+ B

∂Ey

∂x
(36)

= −∇ · E⊥B − B∇⊥ · E = −∇ · E⊥B − B

c

∂B

∂t
= −∇ · E⊥B − 1

2c

∂B2

∂t
,

so that eq. (35) can be written as,

− J · E = ∇ ·
( c

2π
E⊥B

)
+

∂

∂t

E2 + B2

4π
≡ ∇ · S +

∂uEM

∂t
, (37)

where,

S =
c

2π
E⊥B, uEM =

E2 + B2

4π
. (38)

The Poynting vector S describes the flux of energy density in the electromagnetic field, and
uEM is the density of energy stored in it.

22Hadamard’s discussion was lengthy, with a somewhat opaque summary in sec. 69, p. 105 of [32]. More
compact arguments are given in [33, 34, 35]. See eqs. (51)-(55) of [35] to recover the 2-d static potential of
charge q from eq. (34).

23For an example, see Appendix B below. (Feb. 17, 2022) For additional comments on Hadamard’s
method of descent, see [20].

24The theme of radiation, and the radiation reaction, in other than three spatial dimensions is the subject
of ongoing discussion, as recently reviewed in [36].
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Related arguments (first given in 3 + 1 spacetime by Abraham [38] and Minkowski [39])
start from the Lorentz force density as the time rate of change of mechanical momentum,

dpmech

dt
= f = ρE +

J⊥
c

B =
E(∇ · E)

2π
+

J⊥
c

B. (39)

We can form the perpendicular-vector version of the third Maxwell equation of (23), finding,

(∇⊥B)⊥ = −∇B =
1

c

∂E⊥
∂t

+
2π

c
J⊥, (40)

J⊥
c

B = −B∇B

2π
− B

2πc

∂E⊥
∂t

= − ∂

∂t

E⊥B

2πc
+

E⊥
2πc

∂B

∂t
− B∇B

2π

= − ∂

∂t

E⊥B

2πc
− E⊥(∇ · E⊥)

2π
− ∇B2

4π
, (41)

such that eq. (39) can be written as,

dpmech

dt
= − ∂

∂t

E⊥B

2πc
+

E(∇ · E)

2π
− E⊥(∇ · E⊥)

2π
− ∇B2

4π
= −dpEM

dt
+ ∇ · T, (42)

where,25

pEM =
E⊥B

2πc
=

S

c2
(43)

is the density of momentum stored in the electromagnetic field, and T is the 2 × 2 Maxwell
stress tensor,

Tij =
EiEj

2π
− δij

E2 + B2

4π
. (44)

A Appendix: Microscopic Electrodynamics via n + 1

Spacetime Vectors

To generalize 3 + 1 spacetime electrodynamics to n + 1 dimensions, it is useful cast 3 + 1
electrodynamics into (3 + 1)-vector notation. We also consider the possibility of magnetic
charges in addition to electric charges.

When Heaviside first presented Maxwell’s equations in vector notation [42] he assumed
that in addition to electric charge and current densities, ρe and Je, there existed magnetic
charge and current densities, ρm and Jm, although there remains no experimental evidence
for the latter.26 Maxwell’s equations for microscopic electrodynamics are then (in Gaussian
units),27

∇ · E = 4πρe, ∇ · B = 4πρm, −c∇ ×E =
∂B

∂t
+ 4πJm, c∇ ×B =

∂E

∂t
+ 4πJe, (45)

25The relation (43) between field momentum density and the Poynting vector was deduced earlier by
different arguments by Thomson, p. 9 of [40], and by Poincaré [41].

26Heaviside seems to have regarded magnetic charges as “fictitious”, as indicated on p. 25 of [43].
27See [44] for Maxwell’s equations in SI units, including a discussion in footnote 7 there about the am-

biguous placement of the permeability μ0 for terms involving magnetic charges.
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where c is the speed of light in vacuum.
The factors of 4π in eq. (45) for 3 + 1 electrodynamics are associated with the surface

area of a unit 3-sphere. We anticipate that in n + 1 spacetime, these factors become,

Sn =
nπn/2

Γ(n/2 + 1)
, (46)

such that S1 = 2, S2 = 2π, S3 = 4π, S4 = 2π2, . . . 28

The fields E and B can be deduced from potentials according to,

E = Ee + Em, B = Be + Bm, (47)

Ee = −∇Ve − 1

c

∂Ae

∂t
, Be = ∇ × Ae, (48)

Bm = −∇Vm − 1

c

∂Am

∂t
, Em = −∇ ×Am, (49)

where in the Lorenz gauge,

∇ · A +
1

c

∂V

∂t
= 0, (50)

and the (retarded) potentials for odd n are related to the source charge/current densities
by,29

Ve,m(x, t) =

∫
ρe,m(x′, t′ = t − r/c)

r
d3x′, Ae,m(x, t) =

∫
Je,m(x′, t′ = t − r/c)

c r
d3x′,(51)

with r = |x− x′|.
The fields E and B obey the duality relations that,

(cρe,Je) → (cρm,Jm), (cρm,Jm) → −(cρe,Je) ⇒ E → B, B → −E. (52)

Expressions (45)-(52) can be taken over to the case of n spatial dimensions, except for
eqs. (45), (48)-(49) which involve the vector cross product, which is defined only for three
spatial dimensions. Hence, we recast these equations into (n + 1)-dimensional vector/tensor
form where a charge-current vector is written Jμ = (cρ,J), μ = 0, 1, . . . , n, a potential is
written Aμ = (V,A), the derivative operator is written ∂μ = (∂/∂ct,−∂/∂x), and the scalar
product of two vectors is written aμbμ = a0b0 − a · b.

Conservation of electric and magnetic charge can now be expressed as,

∂μJμ = 0

(
=

∂ρ

∂t
+ ∇ · J

)
. (53)

We introduce the antisymmetric field tensors Fe and Fm with components,

Fe,μν = ∂μAe,ν − ∂νAe,μ, Fm,μν = ∂μAm,ν − ∂νAm,μ, (54)

28While many people prefer to use units such that the factors of 4π do not appear in Maxwell’s equations
in 3 + 1 electrodynamics, these units obscure the generalization to n + 1 spacetime.

29Ae is often called the magnetic vector potential, but as its source is the electrical current Je, it is better
called the electric vector potential.
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In 3 spatial dimensions (3 + 1 electrodynamics) these tensors have components,

Fe =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ee,1 −Ee,2 −Ee,3

Ee,1 0 −Be,3 Be,2

Ee,2 Be,3 0 −Be,1

Ee,3 −Be,2 Be,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Fm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Bm,1 −Bm,2 −Bm,3

Bm,1 0 Em,3 −Em,2

Bm,2 −Em,3 0 Em,1

Bm,3 Em,2 −Em,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (55)

Then, the tensor relations, where Sn is defined in eq. (46),

∂μFe,μν =
Sn

c
Je,μ , ∂μFm,μν =

Sn

c
Jm,μ, (56)

lead to the Maxwell equations in n = 3 spatial dimensions,

∇ · Ee = 4πρe, c∇× Be =
∂Ee

∂t
+ 4πJe, ∇ · Bm = 4πρm, −c∇ × Em = −∂Bm

∂t
+ 4πJm.(57)

The remaining Maxwell equations,

∇ · Be = 0, −c∇ ×Ee =
∂Be

∂t
, ∇ · Em = 0, c∇ × Bm =

∂Em

∂t
, (58)

can be obtained from,

∂λFe,μν + ∂μFe,νλ + ∂νFe,λμ = 0, ∂λFm,μν + ∂μFm,νλ + ∂νFm,λμ = 0, (59)

which are true for any values of the indices {λ, μ, ν}, but which are nontrivial only if all
three indices are distinct, leading to only four different relations for indices {1, 2, 3} (which
corresponds to the divergence equations in (58)), and {0, 1, 2}, {0, 2, 3}, {0, 3, 1} (which
correspond to the curl equations).

Turning to the Maxwell stress-energy-momentum tensor, we note that in 3 + 1 spacetime
this can be written as,

Tμν =
1

4π
FμλFλν +

1

16π
ημ,νFκλFκλ, (60)

where,

Fμν =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (61)

and ημν is the “metric” tensor with η00 = 1, ηii = −1, and all other components 0.
However, 3 + 1 spacetime is a special case in this regard, as number of distinct field

components in the electric and magnetic field tensors Fe or Fm, eq. (54), in n + 1 spacetime
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is n components with indices 0i and n(n − 1)/2 components with indices ij for a total of
Nn = n(n + 1)/2 in n +1 electrodynamics; N1 = 1, N2 = 3, N3 = 6, N4 = 10, etc. The only
case with the same number of components of the two types, i.e., with n = n(n − 1)/2, is
n = 3; only in 3 + 1 spacetime do the components of Fe or Fm combine into a single 4-tensor
(61). In any other spatial dimension than 3, the components of the electric and magnetic
field tensors (54) are different physical entities, and the stress-energy-momentum tensor is,

Tμν =
1

4π
Fe,μλFe,λν +

1

16π
ημ,νFe,κλFe,κλ +

1

4π
Fm,μλFm,λν +

1

16π
ημ,νFm,κλFm,κλ. (62)

Finally, (in the present survey) the Lorentz-force (density) law in 3 + 1 spacetime is,

f = fe + fm = ρeE +
Je

c
× B + ρmB− Jm

c
×E, (63)

assuming that the electromagnetic fields in eq.(63) are the total fields E = Ee + Em and
B = Be + Bm. To cast the Lorentz force into tensor notation, it is useful to introduce the
dual tensors F�

μν = 1
2
εμμκλFμν ,

F�
e =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Be,1 −Be,2 −Be,3

Be,1 0 Ee,3 −Ee,2

Be,2 −Ee,3 0 Ee,1

Be,3 Ee,2 −Ee,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, F�
m =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Em,1 −Em,2 −Em,3

Em,1 0 −Bm,3 Bm,2

Em,2 Bm,3 0 −Bm,1

Em,3 −Bm,2 Bm,1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (64)

Then, we can define the total field tensors,

F = Fe + F�
m, F� = F�

e + Fm, (65)

and the Lorentz-force law can be written as,

fμ = Fμν
Je,ν

c
+ F�

μν

Jm,ν

c
(3 + 1 spacetime), (66)

However, as seen above, only in 3 + 1 spacetime can the components of the field tensors
Fe,μν and Fm,μν be combined into a single field tensor Fμν such that total 3-vector electric and
magnetic fields can be defined as the sums of the 3-vector fields due to electric and magnetic
charges, E = Ee + Em and B = Be + Bm. For other spatial dimensions we can only have,

fμ = Fe,μν
Je,ν

c
+ Fm,μν

Jm,ν

c
(n 	= 3). (67)

which means that magnetic charges, if they exist, do not interact electromagnetically with
electric charges (and so would be very hard to detect in apparatus made of electric charges).
There is no distinction between the behavior of “electric” and “magnetic” charges when
eq. (67) applies, so if both types of charges exist, it as if there were two types of electric
charges with no interactions between the two types.

Note also that it is a logical possibility that the form (67) holds in 3 + 1 spacetime as
well, which could be why magnetic charges have not been detected in apparatus based on
the electromagnetic interaction of electric charges.30

30Magnetic charges that do not couple to electric charges, but have their own “magnetodynamics”, are
not candidates for the dark matter of galactic haloes, as the magnetodynamic interaction would permit
clumping of magnetic-charge matter similar to the clumping of electric-charge matter via electrodynamics.

12



A.1 Electrodynamics in 1 Spatial Dimension

In 1 + 1 electrodynamics, with one spatial dimension, x, the field tensors (54) have compo-
nents,

Fe =

⎛
⎝ 0 −Ee

Ee 0

⎞
⎠ , Fm =

⎛
⎝ 0 −Bm

Bm 0

⎞
⎠ . (68)

There is no magnetic field associated with moving electric charge, and no electric field due
to moving magnetic charge. That is, the electric field is only due to electric charge, and the
magnetic field is only due to magnetic charge.

The relations (59) lead to only trivial equations, as there are now only two value for the
indices {λ, μ, ν} which must be all distinct to have a nontrivial relation. The relations (56)
lead to the “Maxwell” equations for S1 = 2,

∂Ee

∂x
= 2ρe,

∂Ee

∂t
= −2Je,

∂Bm

∂x
= 2ρm,

∂Bm

∂t
= −2Jm. (69)

Only two of these four equations are independent, in view of charge conservation,

∂ρe

∂t
= −∂Je

∂x
,

∂ρm

∂t
= −∂Jm

∂x
. (70)

Equations (69) indicate that the fields Ee and Bm are constant in both x and t in charge-
free regions. Hence, there are no electromagnetic waves in charge-free regions in 1 + 1
electrodynamics, for which the constant c does not have the significance of the speed of
electromagnetic waves.

If electric charge q is distributed uniformly between on the interval [−dx/2, dx/2] then
the charge density is ρ = q/dx, and the constant fields ±Ee outside the charge distribution
are related by the first of eq. (69) by,

dEe

dx
=

2Ee

dx
= 2ρe =

2q

dx
, (71)

so Ee = q, as previously argued in sec. 2.1.
The force density on electric and magnetic charge distributions is,

f = ρeEe + ρmBm. (72)

There is no coupling between “electric” and “magnetic” charges.

A.2 Electrodynamics in 2 Spatial Dimensions

In 2 + 1 electrodynamics the field tensors (54) have components,

Fe =

⎛
⎜⎜⎜⎝

0 −Ee,1 −Ee,2

Ee,1 0 −Be

Ee,2 Be 0

⎞
⎟⎟⎟⎠ , Fm =

⎛
⎜⎜⎜⎝

0 −Bm,1 −Bm,2

Bm,1 0 −Em

Bm,2 Em 0

⎞
⎟⎟⎟⎠ . (73)
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The fields Ee and Bm are 2-vectors, while the fields Be and Em are scalars.
The force density on electric and magnetic charge distributions is,

f = ρeEe +
Je,⊥Be

c
+ ρmBm +

Jm,⊥Bm

c
. (74)

As in any n+1 spacetime except 3 + 1, there is no coupling between “electric” and “magnetic”
charges, and no conceptual distinction between them.

B Appendix: Magnetic Field in Two Spatial Dimen-

sions when the Current in a Loop Falls to Zero

All examples with axial symmetry about the z-axis in three spatial dimensions “descend”31

to examples in two spatial dimensions in which the 3-d fields E3 = Eθ θ̂ and B3 = Bz ẑ
correspond to the 2-d (vector) electric field E2 and the scalar magnetic field B2.

As noted in sec. 2.2.1 above, this has a disconcerting implication for propagation of time-
dependent effects in 2-d electrodynamics. Namely, a change in the source charges/currents
at, say, t = 0 and (r, θ) = (r, 0) in a 2-d polar coordinate system leads to changes in the fields
at (R, θ) for all times t > R/c and not just at time t = R/c. This is because r = 0 in a 2-d
example is equivalent to the entire z-axis in the 3-d, axially symmetric, equivalent example,
where an observer at r = R and z = 0 in a 3-d cylindrical coordinate system (r, θ, z) detects
a change at r = 0, z and t = 0 at time t =

√
R2 + z2/c. Accordingly, the 2-d observer also

detects a change in the fields at time t =
√

R2 + z2/c for any value of z (although z is not a
spatial coordinate for the 2-d observer, but only a parameter).

We illustrate this for the 2-d example of a circular current loop of radius a, where the
current obeys,

I(t) =

⎧⎨
⎩ I0 (t < 0),

0 (t > 0).
(75)

One might näıvely suppose that an observer at the origin would detect no magnetic field for
t > a/c, but actually he would detect some magnetic field at arbitrarily large times.

To understand this, we consider the 3-d equivalent of this example, i.e., an infinite
solenoid of radius a with azimuthal current density I0 per unit length in z. For t < 0, the
3-d magnetic field is purely axial,

Bz(t < 0) =

⎧⎨
⎩

4πI0
c

(r < a),

0 (r > a).
(76)

For t > a/c, an observer at the origin has not yet received the “message” that the current
has dropped to zero for points with |z| >

√
c2t2 − a2, and supposes that the current still

flows there. That is, the observer considers the magnetic field at time t > 0 to be 4πI0/c

31This terminology was introduced by Hadamard [32].
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minus that due to a solenoid of radius a and axial extent |z| <
√

c2t2 − a2. The latter field
is,

4πI0

c

|z|√
a2 + z2

=
4πI0

c

√
1 − a2

c2t2
, (77)

recalling prob. 5.3 of [45]. The magnetic field at the origin for t > a/c is therefore,

Bz(t > a/c) =
4πI0

c

(
1 −

√
1 − a2

c2t2

)
≈ 4πI0

c

a2

2c2t2
, (78)

where the approximation holds for t � a/c. For t = 2a/c, the magnetic field at the origin is
still 0.13 of its steady value for t < a/c.

This behavior, deduced via a 3-d analysis, also applies to the 2-d version of the example,
on changing the factor 4π to 2π.

C Appendix: Duality Transformations (Feb. 19, 2022)

If both electric and magnetic charges exist, Maxwell’s equations in (3 + 1) dimensions can
be written as,

∇ · E = 4πρe, ∇ · B = 4πρm, −c∇ ×E =
∂B

∂t
+ 4πJm, c∇ ×B =

∂E

∂t
+ 4πJe. (79)

These equations are invariant under the duality transformations,32

qe → qm, qm → −qe, E → B, B → −E, (80)

in the sense that they take the same form but with electric charges replaced by magnetic
charges, and vice versa.33

We can use the duality transformations (80) in (1 + 1) and (2 + 1) electrodynamics
to obtain additional versions of electrodynamics there. However, as noted towards the end
of Appendix A above, there is no coupling between electric and magnetic charges in (1 +
1) or (2 + 1) electrodynamics, so the additional versions of electrodynamics are effectively
identical to their dual forms, being different only in notation.

C.1 (1 + 1) Electrodynamics

C.1.1 The Electrodynamics of Sec. 2.1.1

In sec. 2.1.1 above, we considered electrodynamics based on the “Maxwell” equations,

∂E

∂x
= 2ρe,

∂E

∂t
= −2Je. (81)

32For a historical review of the concept of electromagnetic duality, see Appendix D of [44].
33In Gaussian units, electric and magnetic charges have the same dimensions, and electric and magnetic

fields have the same dimensions.
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According to the duality transformations (80), we can also consider (1 + 1) electrodynamics
according to,

∂B

∂x
= 2ρm,

∂B

∂t
= −2Jm. (82)

This is essentially the same electrodynamics, but the term “electric” replaced by the term
“magnetic”.

C.1.2 The Electrodynamics of Footnote 7

In footnote 7 above, we considered electrodynamics based on the “Maxwell” equations,

∂B

∂x
=

1

c

∂E

∂t
+ Je,

∂E

∂x
=

1

c

∂B

∂t
. (83)

According to the duality transformations (80), we can also consider (1 + 1) electrodynamics
according to,

− ∂E

∂x
=

1

c

∂B

∂t
+ Jm,

∂B

∂t
= −1

c

∂E

∂t
. (84)

Again, the difference between the dual forms, here (83) and (84), is only a matter of notation.

C.2 (2 + 1) Electrodynamics

In eq. (23) of sec. 2.2 above, we considered (2 + 1) electrodynamics with the “Maxwell”
equations,

∇ · E = 2πρe, ∇⊥ · E =
1

c

∂B

∂t
, ∇⊥B =

1

c

∂E

∂t
+

2π

c
Je. (85)

According to the duality transformations (80) we can also consider the electrodynamics
according to,

∇ · B = 2πρm, ∇⊥ · B = −1

c

∂E

∂t
, −∇⊥E =

1

c

∂B

∂t
+

2π

c
Jm. (86)

Again, there is no physical difference between the dual forms, (85) and (86).
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